Why data only helps those who persevere!

3 Reasons why tenacity is required

  • The data landscape is complex
  • Not data itself but the ability to change based on data drives competitive advantage
  • It is not easy to understanding and influence customers

The data landscape is complex

What do we want to achieve, what data sources are relevant, which data is available, can it be used, how can we use it, how do we measure effect, what is the impact on the customer experience, what are the cost, etc, etc? To answer these and many other questions requires clarity on objectives and a clear prioritization of them and related activities. Thus, effective application of the data potential is dependent on many variables and the learning process is an organizational challenge.

Most organisations are not aware of this complexity and tend to focus on some of the elements for success overlooking others. Marketing technology and GDPR have been top of mind for quite some time and huge investments have been made. Focus on disclosing relevant data sources and developing organizational capabilities that accelerate returns of these investments deserve more attention.

Balancing all elements within the data landscape and working effectively with multidisciplinary teams is challenging but improves effective use of resources and limits inefficiencies. A data strategy that integrates activities and recognizes dependencies across departments accelerates data usage and improves effectivity and efficiency.

 

The ability to change drives competitive advantage

Wouldn’t it be nice if just one good analysis or data model would explain how to improve sales conversion, how to make unhappy customers happy again and how customer engagement can be improved. We all know that the opposite is true. Many variables impact customer behaviour and it takes time to translate insights into an improved customer experience.

When using data to improve the customer journey, new opportunities appear faster and decision making is simplified. This faster detection of improvement potential and efficient decision making accelerates the adaption to changing market conditions and the ability to swiftly adjust to changing customer needs.

Organizations using data to improve their business should anticipate for constant improvement and organize using learning loops, A-B testing and continuous customer journey development. Finally it should be well accepted that marketing program, sales distribution and media tactics will constantly change and data analysis is a structural element. This will accelerate your business results.

 

Knowing and understanding customers is not easy

Artificial Intelligence or algorithms do NOT fully explain customers interests, desires and needs. They can clarify partially why people behave in certain ways but they are no instant fix to fully understand consumer behaviour.  Data analysis, data modelling and to a lesser extent AI will help you to explore and explain customer needs and behaviour. 

Do you want to identify customer needs and understand their behaviour in each stage of the lifecycle? Then invest time and interest in translating customer feedback into meaningful hypothesis and validate them with actual data. This explorative journey is a step by step process in which your customers should be at the hart of it.

 

Conclusion

Using data effectively requires:

  • A clear understanding of the data landscape and the ability to apply data
  • The organisational ability to change swiftly based on insights
  • A deep understanding of customer needs and behaviour. 

Mastering these elements take time and is challenging. Although it becomes easier when capabilities grow, effective use of data will remain an ongoing learning process that require dedication and tenacity. Hence my statement that data will only help those who preserver! 

Written by Dennis Stolk August 2018 

tenacity.jpg
Terug naar overzicht